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Abstract: In this study, we derive certain travelling wave solutions for the space and time 𝛽𝛽 −fractional 
Chen-Lee-Liu equation, which serves as a fundamental equation in optical fiber modeling. It has many 
applications in wide variety of fields such as in the study of nonlinear dynamics, circuit design, signal 
processing, encryption and decryption of chaotic signals to mention a few. The tanh-coth scheme has 
been implemented to the space and time 𝛽𝛽 −fractional Chen-Lee-Liu model equation to achieve the 
exact travelling wave solutions. The study also presents the necessary constraint conditions for the 
existence of soliton solutions. The obtained wave profiles might play important role in fiber optics, 
nonlinear optics and telecommunications systems. Furthermore, numerical simulations are illustrated for 
some of the obtained results, through 3D and 2D graphs.  

          Keywords:  Chen-Lee-Liu equation, Travelling wave solutions, Fractional Chen-Lee-Liu equation, space 
and time 𝛽𝛽 −fractional derivative. 

1. INTRODUCTION

The investigation of optical soliton solutions 
within the realm of fiber optic pulse propagation 
remains a vibrant area of research. Numerous 
models capturing this dynamic arise from 
diverse contexts. For instance, the Schrödinger-
Hirota equation is examined for dispersive 
solitons, while the Fokas-Lennel equation is 
explored in scenarios characterized by low 
group velocity dispersion (GVD), among others. 
The wave phenomena of Chen-Lee-Liu equation 
(CLL) can be used in optical fiber. The signal
pulse of the optical soliton solution (OSS) of the
Chen-Lee-Liu equation can be discussed in the
optical fiber. Clearly, most of these systems are
typically described in the time domain and are
described by the field propagation at different
frequencies. Most dynamical systems have 
complex partial differential equations and focus
on these equations in fiber optic communication
systems. In addition, significant advances were
made during this period, such as the

development of fiber amplifiers nonlinear effects on 
optical fibers and optical solitons for transmitting 
data through optical fiber losses. Many scholars have 
studied the CLL equation and investigated the OSSs. 
In that sense, (Zhang et al., 2015) studied CLL 
equation through the Darboux transformation that 
included higher order components and obtained 
rogue wave solutions. Yildirim (2019) reported the 
dark, bright, and singular solitons of the CLL 
equation using the trial equation scheme. Biswas et 
al. (2018) have explored chirped OSSs from the CLL 
equation by using the extended trial equation scheme. 
A complex envelope travelling wave method was 
applied to CLL equation and explored by (Triki et al., 
2018). Bansal et al. (2020) reported the dark, bright, 
type OSSs in the CLL equation using the lie 
symmetry analysis. Recently Rehman et al. (2021) 
and Akinyemi et al. (2021) investigated the new and 
explicit OSSs of the CLL equation by utilizing the 
new extended direct algebraic and generalized �𝐺𝐺
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expansion methods, Rayhanul Islam et al. 
(2023) investigated the optical soliton solutions, 
bifurcation, and stability analysis of the Chen-
Lee-Liu model and so on. 
 In this paper, we delve into the fractional Chen-
Lee-Liu equation utilizing the tanh-coth method 
to derive its precise traveling wave solutions. 
The remaining parts of the paper are as follows: 
the definition and some properties of beta 
fractional derivative has been explained in 
section 2. The tanh-coth technique has been 
discussed in section 3. In section 4, 
mathematical analysis of space and time beta 
fractional Chen-Lee-Liu (CLL) equation. 
Section 5 provides the application of tanh-coth 
method to solve fractional CLL equation. 
Section 6 explains results and discussion and 
finally conclude in section 7. 

2. THE BETA DERIVATIVE
The concept of incorporating memory effects
into mathematical modeling has been a
longstanding challenge. Traditional models
often lack a natural framework to accommodate
memory, as highlighted in works by (Podlubny
1998; Oldham 1974), and Singh et al. (2017).
Fractional derivatives, as introduced by Caputo
et al. (1971, 2015) and (Atangana 2016;
Atangana et al., 2016), offer a comprehensive
explanation for this memory effect. (Khalil et
al., 2014), introduced the "conformable
derivative," which adheres to classical derivative
properties such as the composite (chain rule),
product rule, and quotient rule. Further analysis
of this derivative was conducted by (Atangana et
al., 2013), who established related theorems. For
additional insights into fractional derivatives, 
refer to works by (He et al., 2017), (Abdeljawad
et al., 2015), (Chung, 2015) and (Yusuf, 2019).
Atangana (2016) also introduced the "beta-
derivative," which addresses several limitations
of fractional derivatives and finds applications
in modeling various physical problems.
The beta-derivative, as defined by Atangana 
(2016), is as follows:

𝐷𝐷𝑡𝑡
𝛽𝛽𝑓𝑓(𝑡𝑡) = lim

𝜀𝜀→0

𝑓𝑓�𝑡𝑡+𝜀𝜀�𝑡𝑡+ 1
Γ(𝛽𝛽)�

1−𝛽𝛽
�−𝑓𝑓(𝑡𝑡)

𝜀𝜀0
𝐴𝐴  ,                                               
(1) 
Beta derivative possesses the following 

properties 
1. 𝐷𝐷𝑡𝑡

𝛽𝛽(0
𝐴𝐴 𝑎𝑎𝑎𝑎(𝑡𝑡) + 𝑏𝑏𝑏𝑏(𝑡𝑡)) =
𝑎𝑎 𝐷𝐷𝑡𝑡

𝛽𝛽𝑓𝑓(𝑡𝑡) + 𝑏𝑏0
𝐴𝐴 𝐷𝐷𝑡𝑡

𝛽𝛽
0
𝐴𝐴 𝑔𝑔(𝑡𝑡),

(2)
2. 𝐷𝐷𝑡𝑡

𝛽𝛽
0
𝐴𝐴 (𝑘𝑘) = 0,   for any constant  𝑘𝑘.
(3)

3. 𝐷𝐷𝑡𝑡
𝛽𝛽

0
𝐴𝐴 �𝑓𝑓(𝑡𝑡).𝑔𝑔(𝑡𝑡)� =
𝑔𝑔(𝑡𝑡) 𝐷𝐷𝑡𝑡

𝛽𝛽𝑓𝑓(𝑡𝑡) + 𝑓𝑓(𝑡𝑡) 𝐷𝐷𝑡𝑡
𝛽𝛽

0
𝐴𝐴 𝑔𝑔(𝑡𝑡),0

𝐴𝐴

(4) 

4. 𝐷𝐷𝑡𝑡
𝛽𝛽

0
𝐴𝐴 �𝑓𝑓(𝑡𝑡)

𝑔𝑔(𝑡𝑡)
� = 𝑔𝑔(𝑡𝑡) 𝐷𝐷𝑡𝑡

𝛽𝛽
0
𝐴𝐴 𝑓𝑓(𝑡𝑡)−𝑓𝑓(𝑡𝑡) 𝐷𝐷𝑡𝑡

𝛽𝛽
0
𝐴𝐴 𝑔𝑔(𝑡𝑡)

𝑔𝑔2(𝑡𝑡)
,

(5) 

Consider 𝜀𝜀 = �𝑡𝑡 + 1
Γ(𝛽𝛽)�

𝛽𝛽−1
ℎ,ℎ → 0, when 𝜀𝜀 →

0, 
We have 

5. 𝐷𝐷𝑡𝑡
𝛽𝛽

0
𝐴𝐴 𝑓𝑓(𝑡𝑡) = �𝑡𝑡 + 1

Γ(𝛽𝛽)�
1−𝛽𝛽 𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑑𝑑
,

(6) 

With  

𝜉𝜉 = 𝑤𝑤𝑤𝑤 − 𝑙𝑙
𝛽𝛽
�𝑡𝑡 + 1

Γ(𝛽𝛽)�
𝛽𝛽

, for time 𝛽𝛽 − fractional
derivative,  (7) 
Where 𝑙𝑙 and 𝑤𝑤 are constants, and 

6. 𝜉𝜉 = 𝑤𝑤
𝛽𝛽
�𝑥𝑥 + 1

Γ(𝛽𝛽)�
𝛽𝛽
− 𝑙𝑙

𝛽𝛽
�𝑡𝑡 + 1

Γ(𝛽𝛽)�
𝛽𝛽

,

(8) 
for space and time 𝛽𝛽 − fractional derivative. 

3 METHODOLOGY 
3.1 Tanh-coth method 

The partial differential equation (PDE) given by 
𝑃𝑃(𝑢𝑢,𝑢𝑢𝑡𝑡 ,𝑢𝑢𝑥𝑥,𝑢𝑢𝑥𝑥𝑥𝑥, 𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥, … ) = 0, (9) 
can be converted into an ordinary differential 
equation (ODE) 𝑄𝑄(𝑢𝑢′,𝑢𝑢′′,𝑢𝑢′′′, … ) = 0.
(10)  
Using the wave variable transform  𝜉𝜉 = 𝑥𝑥 − 𝑐𝑐𝑐𝑐. 
Equation (10) is then integrated as long as all terms 
contain derivatives, with the integration constants 
taken to be zero.  
Introducing the new independent variable 

𝑌𝑌 = tanh (𝜇𝜇 𝜉𝜉)𝜉𝜉 = 𝑥𝑥 − 𝑐𝑐𝑐𝑐,   
(11) 
Where 𝜇𝜇 is the wave number, leads to the change of 
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derivatives: 
𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜇𝜇(1 − 𝑌𝑌2) 𝑑𝑑
𝑑𝑑𝑑𝑑

,                                                         
(12) 
𝑑𝑑2

𝑑𝑑𝜉𝜉2
= −2𝜇𝜇2𝑌𝑌(1 − 𝑌𝑌2) 𝑑𝑑

𝑑𝑑𝑑𝑑
+ 𝜇𝜇2(1 − 𝑌𝑌2)2 𝑑𝑑2

𝑑𝑑𝑌𝑌2
.                                                                                  

(13)                                     
And so on. 
The tanh-coth method allows for the finite 
expansion: 
(𝜇𝜇 𝜉𝜉) = 𝑆𝑆(𝑌𝑌) = ∑ 𝑎𝑎𝑘𝑘𝑌𝑌𝑘𝑘 + ∑ 𝑏𝑏𝑘𝑘𝑌𝑌−𝑘𝑘𝑀𝑀

𝑘𝑘=1 ,𝑀𝑀
𝑘𝑘=0                                                                                      

(14) 
Where 𝑀𝑀 is a positive integer, typically 
determined through the balancing method. We 
usually balance the highest derivative and the 
highest order of the nonlinear term in the 
equation. 
By substituting Eq. (14) into the reduced ODE, 
we collect all coefficients of each power of 
𝑌𝑌𝑘𝑘,   0 ≤ 𝑘𝑘 ≤ 𝑛𝑛𝑛𝑛 in the resulting equation. 
These coefficients must vanish, resulting in a 
system of algebraic equations involving the 
parameters  𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘, 𝜇𝜇,𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐. 
Finally, through this process, we obtain an 
analytic solution 𝑢𝑢(𝑥𝑥, 𝑡𝑡) in closed form. 
4. MATHEMATICAL ANALYSIS
In this section we explore the mathematical
analysis of space and time 𝛽𝛽 − fractional CLL
model equation:        
4.1. Space and time 𝜷𝜷 −fractional Chen-Lee-
Liu Equation
We examine the progression of a slowly varying
envelope represented by a family of Chen-Lee-
Liu equations (CLL), as formulated in Atangana
(2013) and further explored by (Yusuf et al.,
2019).
𝑖𝑖 𝐷𝐷𝑡𝑡

𝛽𝛽𝑢𝑢 + 𝑎𝑎 𝐷𝐷𝑥𝑥
2𝛽𝛽𝑢𝑢 + 𝑖𝑖𝑖𝑖(|𝑢𝑢|0

𝐴𝐴
0
𝐴𝐴 2) 𝐷𝐷𝑡𝑡

𝛽𝛽
0
𝐴𝐴 𝑢𝑢 = 0.                                                  

(15) 
In the above equation, 𝑢𝑢(𝑥𝑥, 𝑡𝑡) represents the 
normalized electric-field envelope, while  𝐷𝐷𝑡𝑡

𝛽𝛽
0
𝐴𝐴

and 𝐷𝐷𝑥𝑥
𝛽𝛽

0
𝐴𝐴  denote beta derivatives as defined by 

Atangana (2016). The coefficients 𝑎𝑎 and 
𝑏𝑏correspond to the group velocity dispersion 
and the Bohm potential, respectively, which are 
significant in studying chiral solitons with 
quantum Hall effect. 
To solve Eq. (15), we start with transformation 
𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑢𝑢(𝜁𝜁)𝑒𝑒iΘ(𝑥𝑥,𝑡𝑡),
(16) 

𝑢𝑢(𝑥𝑥, 𝑡𝑡), represents the shape of the pulse so that 

𝜁𝜁 = 𝑙𝑙
𝛽𝛽
�𝑥𝑥 + 1

Γ(𝛽𝛽)�
𝛽𝛽
− 𝜗𝜗

𝛽𝛽
�𝑡𝑡 + 1

Γ(𝛽𝛽)�
𝛽𝛽

,
(17) 
And the phase component is given by 

Θ(𝑥𝑥, 𝑡𝑡) = − 𝑘𝑘
𝛽𝛽
�𝑥𝑥 + 1

Γ(𝛽𝛽)�
𝛽𝛽

+ 𝜔𝜔
𝛽𝛽
�𝑡𝑡 + 1

Γ(𝛽𝛽)�
𝛽𝛽

+ 𝜑𝜑0(𝜁𝜁).
(18) 
Let 𝑘𝑘 represent the soliton frequency and 𝜔𝜔 signify 
the wave number of the soliton. The function 𝜑𝜑0(𝜁𝜁)is 
an additional phase function that depends on the 
variable 𝜁𝜁 and 𝜗𝜗 denotes the soliton's speed. By 
substituting Eq. (16) into Eq. (15) and separating the 
real and imaginary components, we derive the 
following results: 
−𝜔𝜔𝜔𝜔 + 𝜗𝜗𝜗𝜗Θ′ + 𝑎𝑎𝑢𝑢′′ − 𝑎𝑎𝑎𝑎Θ′2 − 𝑎𝑎𝑘𝑘2𝑢𝑢 + 2𝑎𝑎𝑎𝑎𝑎𝑎Θ′ −
𝑏𝑏𝑢𝑢3Θ′ + 𝑏𝑏𝑏𝑏𝑢𝑢3 = 0,                                       (19)
And
𝑎𝑎(𝑢𝑢Θ′′ + 2𝑢𝑢′Θ′) − 𝜗𝜗𝑢𝑢′ − 2𝑎𝑎𝑎𝑎𝑢𝑢′ + 𝑏𝑏𝑢𝑢2𝑢𝑢′ = 0,
(20)
Where 𝑢𝑢′ = 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
,𝑢𝑢′′ = 𝑑𝑑2𝑢𝑢

𝑑𝑑𝜁𝜁2
,Θ′ = 𝑑𝑑Θ

𝑑𝑑𝑑𝑑
,Θ′′ = 𝑑𝑑2Θ

𝑑𝑑𝜁𝜁2
. 

To solve the equations above, we employ the 
following ODE of the form
Θ′ = 𝑧𝑧1𝑢𝑢2 + 𝑧𝑧2.
(21) 

Where 𝑧𝑧1 and 𝑧𝑧2 are the nonlinear and constant chirp 
parameters to be determined. By substituting Eq. (21) 
into Eq. (20), we derive two algebraic equations that 
determine these chirp parameters. 
𝑧𝑧1 = − 𝑏𝑏

4𝑎𝑎
, 𝑧𝑧2 = 𝑘𝑘 + 𝜗𝜗

2𝑎𝑎
.

(22) 
Substituting Eq. (20) along with Eq. (21) into Eq. 
(19) yields the following result:
𝑢𝑢′′ + 𝐴𝐴1𝑢𝑢 + 𝐴𝐴2𝑢𝑢3 + 𝐴𝐴𝑢𝑢5 = 0,
(23) 
Where  
𝐴𝐴1 = 𝜗𝜗2

4𝑎𝑎2
+ 𝜗𝜗𝜗𝜗

𝑎𝑎
− 𝜔𝜔

𝑎𝑎
,𝐴𝐴2 = − 𝑏𝑏𝑏𝑏

2𝑎𝑎2
,𝐴𝐴3 = 3𝑏𝑏2

16𝑎𝑎2
.

(24) 
Applying the balancing principle in Eq. (23) results 
in  𝑀𝑀 = 1

2
, which is not in a closed form. To achieve 

closed-form solutions, we employ the transformation: 

𝑢𝑢 = 𝑉𝑉
1
2,

(25) 
Putting the above Eq. (25) in Eq. (23), we obtain 
4𝐴𝐴1𝑉𝑉2 + 4𝐴𝐴2𝑉𝑉3 + 4𝐴𝐴3𝑉𝑉4 + 2𝑉𝑉𝑉𝑉′′ − 𝑉𝑉′2 =0.



YJPAS Vol 1, Issue 1, Pages 297-XXX Balili A. 2025 

 300  | YJPASPUBLICATION OF YUSUF MAITAMA SULE UNIVERSITY, KANO 
1 

(26) 
Applying the balancing principle in Eq. (26) 
gives 𝑀𝑀 = 1. 

5 APPLICATIONS 

This section deals with the Tanh-coth method to 
get the precise travelling wave solutions of the 
Chen-Lee-Liu equation. 

5.1 The solution of space and time 
𝜷𝜷 −fractional Chen-Lee-Liu equation 

In this part, we utilize the tanh-coth method to 
derive the solution of the equation referred to as 
Eq. (15).                           
We aim to find the solution of Eq. (26) in the 
following form: 
𝑉𝑉(𝜉𝜉) = 𝑎𝑎0 + 𝑎𝑎1𝑌𝑌(𝜉𝜉) + 𝑏𝑏1𝑌𝑌−1(𝜉𝜉).           
(27) 
By substituting 𝑉𝑉(𝜉𝜉) and its derivatives in eq. 
(26) and setting the coefficients of 𝑌𝑌𝑗𝑗: 𝑗𝑗 =
−1,0,1 to zero, it produces a system of algebraic
equations:

12𝐴𝐴1𝑎𝑎12𝑏𝑏1 + 8𝐴𝐴1𝑎𝑎0𝑎𝑎1 + 48𝐴𝐴3𝑎𝑎0𝑎𝑎12𝑏𝑏1
+ 12𝐴𝐴2𝑎𝑎02𝑎𝑎1 − 4𝜇𝜇2𝑎𝑎0𝑎𝑎1
+ 16𝐴𝐴3𝑎𝑎03𝑎𝑎1 = 0, 

24𝐴𝐴3𝑎𝑎02𝑎𝑎12 + 12𝐴𝐴2𝑎𝑎0𝑎𝑎12 + 16𝐴𝐴3𝑎𝑎13𝑏𝑏1
+ 6𝜇𝜇2𝑎𝑎1𝑏𝑏1 − 2𝜇𝜇2𝑎𝑎12 + 4𝐴𝐴1𝑎𝑎12
= 0, 

4𝐴𝐴1𝑎𝑎13 + 4𝜇𝜇2𝑎𝑎0𝑎𝑎1 + 16𝐴𝐴3𝑎𝑎0𝑎𝑎13 = 0, 
3𝜇𝜇2𝑎𝑎12 + 4𝐴𝐴3𝑎𝑎14 = 0, 

48𝐴𝐴3𝑎𝑎0𝑎𝑎1𝑏𝑏12 + 12𝐴𝐴2𝑎𝑎02𝑏𝑏1 + 16𝐴𝐴3𝑎𝑎03𝑏𝑏1 +
12𝐴𝐴2𝑎𝑎1𝑏𝑏12 − 4𝜇𝜇2𝑎𝑎0𝑏𝑏1 + 8𝐴𝐴1𝑎𝑎0𝑏𝑏1 = 0,
(28) 

−2𝜇𝜇2𝑏𝑏12 + 16𝐴𝐴3𝑎𝑎1𝑏𝑏13 + 6𝜇𝜇2𝑎𝑎1𝑏𝑏1 + 4𝐴𝐴1𝑏𝑏12
+ 24𝐴𝐴3𝑎𝑎02𝑏𝑏12 + 12𝐴𝐴2𝑎𝑎0𝑏𝑏12 = 0, 

16𝐴𝐴3𝑎𝑎0𝑏𝑏13 + 4𝜇𝜇2𝑎𝑎0𝑏𝑏1 + 4𝐴𝐴2𝑏𝑏13 = 0, 
4𝐴𝐴3𝑏𝑏14 + 3𝜇𝜇2𝑏𝑏12 = 0, 

48𝐴𝐴3𝑎𝑎02𝑎𝑎1𝑏𝑏1 + 24𝐴𝐴2𝑎𝑎0𝑎𝑎1𝑏𝑏1 + 4𝐴𝐴1𝑎𝑎02 + 4𝐴𝐴2𝑎𝑎03
+ 4𝐴𝐴3𝑎𝑎04 − 𝜇𝜇2𝑎𝑎12 − 𝜇𝜇2𝑏𝑏12 + 24𝐴𝐴3𝑎𝑎12𝑏𝑏12
− 12𝜇𝜇2𝑎𝑎1𝑏𝑏1 + 8𝐴𝐴1𝑎𝑎1𝑏𝑏1 = 0.

Solving this system Eq. (28), using maple software 
package. 

We obtain the exact solutions as 
𝑎𝑎0 = −3

8
. 𝐴𝐴2
𝐴𝐴3

,𝑎𝑎1 = 0, 𝑏𝑏1 = 3
8
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, 𝜇𝜇 =

± 1
4

.�− 3
𝐴𝐴3

.𝐴𝐴2, 𝐴𝐴1 = 3
16

. 𝐴𝐴2
2

𝐴𝐴3
(29) 
𝑢𝑢1,1(𝑥𝑥, 𝑡𝑡) = −3

8
. 𝐴𝐴2
𝐴𝐴3

+
3
8

. 𝐴𝐴2
𝐴𝐴3
𝑐𝑐𝑐𝑐𝑐𝑐ℎ �1

4
.�− 3

𝐴𝐴3
.𝐴𝐴2 �

𝑙𝑙
𝛽𝛽
�𝑥𝑥 + 1

Γ(𝛽𝛽)�
𝛽𝛽
−

𝜈𝜈
𝛽𝛽
�𝑡𝑡 + 1

Γ(𝛽𝛽)�
𝛽𝛽
�� (30)
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𝑢𝑢2,1(𝑥𝑥, 𝑡𝑡) = −3
8

. 𝐴𝐴2
𝐴𝐴3

+ 3
8

. 𝐴𝐴2
𝐴𝐴3
𝑡𝑡𝑡𝑡𝑡𝑡ℎ �1
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𝑙𝑙
𝛽𝛽
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𝛽𝛽
− 𝜈𝜈

𝛽𝛽
�𝑡𝑡 + 1

Γ(𝛽𝛽)�
𝛽𝛽
��.( 31)

𝐴𝐴2 = 1,𝐴𝐴3 = 1,𝐴𝐴1 = 3
16

. 𝐴𝐴2
2

𝐴𝐴3
, 𝑙𝑙 = 2, 𝜈𝜈 = −1,𝛽𝛽 = 1

2
(32) 

𝑢𝑢3,1(𝑥𝑥, 𝑡𝑡) = −3
8

. 𝐴𝐴2
𝐴𝐴3

+ 3
8

. 𝐴𝐴2
𝐴𝐴3
𝑡𝑡𝑡𝑡𝑡𝑡ℎ �1

4
.�− 3

𝐴𝐴3
.𝐴𝐴2 �

𝑙𝑙
𝛽𝛽
�𝑥𝑥 + 1

Γ(𝛽𝛽)�
𝛽𝛽
− 𝜈𝜈

𝛽𝛽
�𝑡𝑡 + 1

Γ(𝛽𝛽)�
𝛽𝛽
��.         (33) 

 

FIGURE 1. (a) 3D-plot of the real, ( b) 3D-plot of the imaginary, (c) 3D-plot of modulus parts 
of the exact travelling wave solution of 𝑢𝑢11(𝑥𝑥, 𝑡𝑡). (d) 2D-plot of the exact travelling solution of 
𝑢𝑢11(𝑥𝑥, 𝑡𝑡). For the values 𝐴𝐴1 = 1,𝐴𝐴3 = −1,𝐴𝐴1 = 3𝐴𝐴22

16𝐴𝐴3
, 𝑙𝑙 = 4, 𝑣𝑣 = −1,𝛽𝛽 = 0.5. 
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𝑎𝑎0 = −3𝐴𝐴2
8𝐴𝐴3

,𝑎𝑎1 = −3𝐴𝐴2
8𝐴𝐴3

, 𝑏𝑏1 = 0,𝐴𝐴1 =
3𝐴𝐴22

16𝐴𝐴3
. ( 34) 

𝑢𝑢4,1(𝑥𝑥, 𝑡𝑡) = −3
8

. 𝐴𝐴2
𝐴𝐴3

+ 3
8

. 𝐴𝐴2

𝐴𝐴3𝑡𝑡𝑡𝑡𝑡𝑡ℎ�
1
4�−

3
𝐴𝐴3
𝐴𝐴2𝜉𝜉�

.

(35) 

FIGURE 3. (a) 3D-plot of the real, ( b) 3D-plot of the imaginary, (c) 3D-plot of modulus parts of the exact travelling 
wave solution of 𝑢𝑢31(𝑥𝑥, 𝑡𝑡). (d) 2D-plot of the exact travelling solution of 𝑢𝑢31(𝑥𝑥, 𝑡𝑡), at 𝑡𝑡 = 0, 𝑡𝑡 = 0.2, 𝑡𝑡 = 0.4, 𝑡𝑡 =
0.6, 𝑡𝑡 = 0.8, 𝑡𝑡 = 1. For 𝐴𝐴1 = 1,𝐴𝐴2 = 1,𝐴𝐴2 = 1,𝐴𝐴1 = 3𝐴𝐴22

16𝐴𝐴3
, 𝑙𝑙 = 2, 𝑣𝑣 = −1, 𝛽𝛽 = 0.5. 
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𝑢𝑢5,1(𝑥𝑥, 𝑡𝑡) = −3𝐴𝐴2
8𝐴𝐴3

+
3𝐴𝐴2
16𝐴𝐴3
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8𝐴𝐴3

− 3𝐴𝐴2
16𝐴𝐴3
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.𝐴𝐴2. 𝜉𝜉� −
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𝑐𝑐𝑐𝑐𝑐𝑐ℎ ��− 3
64𝐴𝐴3

.𝐴𝐴2. 𝜉𝜉�, (38) 

𝐴𝐴1 = 3𝐴𝐴22

16𝐴𝐴3
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(39) 

𝑢𝑢7,1(𝑥𝑥, 𝑡𝑡) = 3𝐴𝐴2
8𝐴𝐴3

− 3𝐼𝐼𝐴𝐴2
16𝐴𝐴3

𝑡𝑡𝑡𝑡𝑡𝑡ℎ �
√3� 1

𝐴𝐴3

8
.𝐴𝐴2. 𝜉𝜉� +

FIGURE 4. (a) 3D-plot of the real, (b) 3D-plot of the imaginary, (c) 3D-plot of modulus parts of the exact travelling 
wave solution of 𝑢𝑢4,1(𝑥𝑥, 𝑡𝑡). (d) 2D-plot of the exact travelling solution of 𝑢𝑢4,1(𝑥𝑥, 𝑡𝑡), at 𝑡𝑡 = 0, 𝑡𝑡 = 0.2, 𝑡𝑡 = 0.4, 𝑡𝑡 =

0.6, 𝑡𝑡 = 0.8, 𝑡𝑡 = 1. For 𝐴𝐴1 = 1,𝐴𝐴2 = 1,𝐴𝐴2 = 1,𝐴𝐴1 = 3𝐴𝐴22

16𝐴𝐴3
, 𝑙𝑙 = 2, 𝑣𝑣 = −1, 𝛽𝛽 = 0.5. 
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3𝐼𝐼𝐼𝐼2
16𝐴𝐴3

𝑐𝑐𝑐𝑐𝑐𝑐ℎ �
√3� 1

𝐴𝐴3

8
.𝐴𝐴2. 𝜉𝜉�,

(40) 
𝐴𝐴1 = 15𝐴𝐴22

64𝐴𝐴3
.                                                                          

(41) 

RESULTS AND DISCUSSION 

The tanh-coth method is employed to establish 
exact travelling wave solutions and other 
solitons for the space and time beta fractional 
Chen-Lee-Liu equation. We obtained seven 
nontrivial solutions of which four numerical 
simulations were reported. Complex structures 
of solution 𝑢𝑢1,1(𝑥𝑥, 𝑡𝑡) Eq. (30) in Figure 1. (a), 
multiple soliton solutions of 𝑢𝑢2,1(𝑥𝑥, 𝑡𝑡) Eq. (31) 
in Figure 2. (c), kink structure depicted by 
𝑢𝑢3,1(𝑥𝑥, 𝑡𝑡) Eq. (33) in Figure 3. (a), anti- kink 
shape by the solution 𝑢𝑢4,1(𝑥𝑥, 𝑡𝑡) Eq. (35) 
presented in Figure 4. (a). The solutions are in 
form of hyperbolic and complex functions. The 
plain understanding for the physical features and 
mechanisms to the reported solutions by suitable 
choice of parameter values are shown through 
3D both real, imaginary, and modulus as well as 
in 2D plots. 

CONCLUSION 
In this work, we have investigated exact 
travelling wave solutions like hyperbolic and 
complex solutions to space and time fractional 
Chen-Lee-Liu equation with tanh-coth method. 
These solutions are favourable for understanding 
diverse nonlinear physical phenomena. The 
structure of the solutions was shown to be kink, 
anti-kink, multiple solitons and other complex 
shapes. The constraints conditions for the 
existence of soliton solutions are reported. The 
obtained results exhibited that the proposed 
approach is powerful, efficient and can be used 
to extract exact travelling wave solutions for 
other nonlinear partial differential equations that 
appear in various fields like engineering, optical 
fibers, oceanography, mathematical biology to 
mention a few.  
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